
Command=〈Value|Context〉

Hans-Dieter A. Hiep

July 10, 2018

1 Introduction

This document one of the results of the Literature Study course
2017–2018, at Vrije Universiteit Amsterdam. The other result was a
presentation given on June 15, 2018, that complements this work.
This work was supervised by Femke van Raamsdonk. Several people
have read a draft version of this document: Benjamin Lion and Jana
Wagemaker. Thank you: Femke, Benjamin and Jana!
The literature collected and studied here aims to provide insight into
the following idea: constructive logics are used as foundations for
certain interactive theorem provers that interprets its proofs as
programs; can we also have an interactive theorem prover which has
classical logic as its foundation, and how can we interpret its proofs
as programs?
What follows in this document is structured in this way:

• First, we have collected paragraphs that intend to describe the
original motivation, outline of the literature study, and its
research agenda: what is a computational interpretation of
classical proofs? We will see a high-level description of
so-called interaction. Interaction is illustrated by an example,
and we describe the hypothesis that classical logic can be
interpreted as interactions between constructive processes.

• Next, we describe proof systems, natural deduction and
sequent calculus. As the study progressed, the author has
found the need to explain, in an intuitive and non-exact way,
how proof systems can be viewed in general. These three

1

sections are not intended as a very precise, complete or
definite description of proof systems.
Instead, we aim to convey a simple message: sequent calculus
is a formalization of derivability in natural deduction. This
message seems to fit with the original reasons sequent calculus
was developed, as a calculus in which to study cut elimination
for classical natural deduction.

• Then we consider focussed sequent calculus and the definition
of generalized type connectives. A generalized type
connective is a user-defined type constructor given either as a
data or codata definition, from which rule schema are derived.
Following these definitions, we show standard connectives and
their derived rules in a focussed sequent calculus as an
example.

• The sequent calculus with generalized type connectives has, as
coto be unterpart to its proof system, a term language. We
consider this term language, and describe how we add terms
for example generalized connectives. The added terms are
value terms (also called constructors), context terms (also
called destructors), and (co)pattern matching.

• The following section animates a previous example by
showing proof normalization, and that a term reduction
relation exists. We discuss the notion of strategy to force the
reduction relation to be confluent.

• We finally give an overview of the studied material, from a
historical perspective.

2

§1 Motivation I am interested in expression languages for both
programs and protocols. A program can be intuitively understood as
a precise specification of the local behavior of a single processor. A
protocol can be understood as a precise specification of the
interaction between multiple processors, delineating global behavior.
Together, programs and protocols realize overall behavior of
systems. This study thus has as goal to find an elegant way of
specifying both local and global behavior.

§2 Outline The approach in this study is twofold. One side is to
investigate syntax. The other side is to investigate semantics. We
will approach syntax by investigating the λµ-calculus [1, 2], the
λµµ̃-calculus [3], and subsequently the µµ̃-calculus with
user-defined (co-)data types [4, 5]. The other side is to approach
semantics by investigating streams and stream differential equations
[6], and timed data streams, constraint automata, and Reo
components and compositions [7]. Although the latter has been
investigated by the author, it is not reported in here.

§3 Proofs-as-programs Logic is closely related to computation,
as intuitively understood by intuitionistic logic and by typed
λ -calculi. The notion of proof normalization in proof theory
corresponds to the notion of term reduction in typed λ -calculi, in a
very precise manner. For example, formulas of minimal
propositional logic and types of simply typed λ -calculus are in a
1-to-1 correspondence. Correspondingly, removing detours in
natural deduction proofs and β -reduction of λ -terms are also related.

3

§4 Multi-machine models A multi-machine model consists of
multiple machines that are interactive, parallel and distributed.
Machines are also called processors, and these terms are synonyms.

• Interactivity comes from the assumption that processors
cannot always individually make progress, but individual
progress depends on communication with other machines.

• Parallelism captures the notion of independent progress, that
is, a processor could make individual progress if it does not
depend on the progress of other processors. Parallelism relates
processors by an overlap in time. By ‘embarrassing
parallelism’ we mean that two processors do not
communicate. By ‘concurrency’ we mean that a processor
alternates between making local progress and communication.

• Distributed processors are logically and spatially separated
from each other, but may be physically connected by a
network. The notions of ‘network topology’ and
‘(de)centralization’ are related to distribution.

Evidently, the realization of many digital computers is done by
modeling a computer as a multi-machine, where individual system
components communicate through interconnects such as a bus.
Note that in this multi-machine model we may not assume that each
machine is constructed or that a precise description of the workings
of such machine is known. Some machines may be provided by
nature and communication with them primarily happens through
sensors or other peripherals. Some machines are proprietary, and
their precise description is a trade secret.

4

§5 Interaction We can understand interaction as a
communication between processors. Assume that individual
behavior of a processor can be described by an algorithm: a
procedure that operates by taking small steps. Interaction can now
express the fact that a processor communicates, as illustrated in the
following concrete example.
Take two machines where one reads a value while the other writes a
value on a shared register. Whenever the reading machine tries to
read the value, it is suspended if the value is not yet defined by a
writer. The reading machine continues only after the writing
machine actually provides a value. Similarly, whenever the writing
machine tries to write a value, it is suspended if there is no place yet
that can store the value. The writing machine continues only after the
reading machine will read the value. The moment that both machines
continue, an information exchange has taken place, and thus the
machines have communicated. We call this notion synchronization.
Perhaps not so surprising, this behavior is also implemented by a
real-world processor [8]:

“Communication occurs when a sending node writes to
a port address and a receiving node to which that port is
connected reads the corresponding port address at the
same time. When a node operates on a port the data
transfer occurs [...] unless the other node connected to
the port is not yet performing the complementary
operation; in this case the operating node suspends,
waking up when the other node connected to that port is
performing the complementary operation.”

5

§6 Classical Logic We will study classical logic. My motive
behind this direction is the hypothesis that classical logic
corresponds to multi-machine models. We cannot expect to prove
such hypothesis based on this literature study alone.
A first corroborating piece of evidence is given in [9]. This paper is
summarized here, but we will not see all technical details. In the
paper, the principle of linearity (a classical axiom) is given a
computational interpretation, namely the notion of synchronization.
Consider the derivation:

(A→ B)∨ (B→ A)

[A→ B]
D1
X

[B→ A]
D2
X

X
∨e

We call the application of the last rule communication. By
proofs-as-programs, we obtain two corresponding programs for
subderivations D1 and D2. We can execute the programs
interactively: if at some point the first program wants to obtain any B
it has to provide some A, cf. write a value. If the second program
wants to obtain any A, cf. read a value, it needs to provide some B.
The actual argument is more subtle. Consider that programs
themselves also could communicate, and that proofs-as-programs
traditionally holds only for intuitionistic logics. It is suggested to
permute communication down the root of the derivation tree such
that the resulting tree is in parallel form, that is, communication only
occurs at the lowest levels, with intuitionistic subderivations on top.
The story does not end there—in fact, a complicated procedure
called cross reductions is necessary to remove detours. This involves
migration of derivations from between two branches and the notion
of communication complexity to show termination.

6

Syntax

The syntax of the languages we will subsequently consider is divided
in three parts: we have proof systems, term languages, and reduction
relations. First we will provide some background regarding proof
systems: natural deduction and in more detail sequent calculus. We
will then see the expression of user-defined types. Then shall we
consider the term language of µµ̃-calculus, and we show its type
system. We will see term reductions to animate some examples.
Finally, we summarize some historical context.
We assume to possess basic preliminary knowledge concerning the
topics: logic in computer science, formal languages, abstract
algebra, proof theory, lambda calculus, term rewriting, and
functional and imperative programming languages.

7

2 Proof systems

A proof system consists of a set of objects and a set of inference
rules. Often, the set of objects is assumed to have a certain
syntactical structure—say formulas or sequences. An inference rule
relates certain subsets of objects. Rules are schematically defined,
that is, the rule schema contains meta-variables that can be
instantiated by concrete objects to obtain a concrete inference rule.
Rule schemas are depicted as follows

a1 . . . an
c1 . . . cm

where n and m are non-negative integers. Above the line, each a1 up
to an is called an assumption. Below the line, each c1 up to cm is
called a conclusion. Assumptions and conclusions are objects,
possibly containing meta-variables. An inference rule is called an
axiom if its set of assumptions is empty.
We consider proof systems that precisely have one conclusion for
each rule. A derivation of such a proof system is a labelled tree.
Each vertex in the tree is labeled by a concrete inference rule. The
number of assumptions of the rule dictate the number of outgoing
branches of the vertex. In addition, there is the restriction that the
assumption of one rule and the conclusion of another rule are the
same when vertices labeled by such rules are linked in the tree.
We remember that the formulation of a proof system itself says
nothing about the validity of its derivations. Proof systems are just
systems of conventional notation and form. Only meta-theoretical
argumentation can convince us that derivations of proof systems are
sound with respect to some mathematical conception.

8

2.1 Natural deduction

Natural deduction is understood as a proof system in which the
objects are formulas, and the rules are logically sound inference
rules. We first consider the implicational fragment of natural
deduction, called minimal logic. Later we extend it to propositional
classical logic.
Formulas contain atomic propositions, denoted by P, Q. Formulas
are closed under implication, that is, given formulas φ and ψ we can
construct the formula (φ → ψ). The use of parenthesis is
conventional.
The proof system of minimal natural deduction has three rules. The
first is the axiom of premise: a rule without assumptions and as
conclusion some formula φ . The second is the modus ponens rule. It
has as assumptions formulas (φ → ψ) and φ , and as conclusion
some formula ψ . The third is the implication introduction rule. It has
as assumption some formula ψ and as conclusion (φ → ψ).
Derivations making use of these rule schemas are considered
logically valid. To make this more precise, we need to consider the
notion of open and closed premises. The set of open premises is
defined inductively over the tree structure of derivations.
A derivation tree with one vertex labeled by the axiom of premise
has as set of open premises the singleton set containing the
conclusion of the rule. Given a derivation tree with the modus
ponens rule at the root, and the two sets of open premises of the
subderivations, then the set of open premises of the whole tree is the
union. A derivation tree with implication introduction at the root has
as set of open premises, the set of open premises of the subderivation

9

without formula φ given that the conclusion is (φ → ψ).
We define the derivability relation ` that relates a set of formulas to a
single formula. Let Γ denote a set of formulas. We define that Γ ` φ

holds iff there exists a derivation tree such that its set of open
premises is Γ and the conclusion of the rule at the root is φ .
Examples are: P ` P and ` P→ P, since we often forget to write {}.
Minimal logic plus the axiom schema of double negation elimination
(¬¬φ)→ φ results in a logic equivalent to classical logic[10]. We
let ¬φ be an abbreviation of φ →⊥ for any formula φ . This
extension of minimal logic hence requires some fixed constant
proposition ⊥ to represent falsehood.
Thus, the formulas of classical logic are: P,Q for atomic
propositions, ⊥ for falsehood, and closure under implication. The
proof system of classical natural deduction has all the rules from
minimal logic, and in addition the axiom schema with as conclusion
((φ →⊥)→⊥)→ φ . Open and closed premises are defined as
before, with the addition that, the set of open premises for the double
negation elimination axiom is empty. We adapt the definition of the
derivability relation ` accordingly. For example, it holds that
` ((P→ Q)→ P)→ P.
We could abbreviate ((φ → ψ)→ ψ) as φ ∨ψ and abbreviate
¬(¬φ ∨¬ψ) as φ ∧ψ , and thereby we obtain the conventional
connectives of propositional classical logic. In addition to the given
rule schemas, we also have that the conventional rule schemas of
classical logic are admissible. A rule is admissible if one can show
that it can be mimicked[10].
Now, the derivability relation ` is an interesting object of study itself.
For example, we could prove that ` φ → ψ holds iff φ ` ψ holds.

10

2.2 Sequent calculus

Sequent calculus can be intuitively understood as a formalization of
the derivability relation `. A main drawback, in my opinion, of the
proof system for natural deduction is the implicit treatment of open
premises. Sequent calculus formalizes this notion explicitly. Another
difference is that the derivability relation relates sets of formula to a
single formula—an asymmetry that can be removed. Instead, we
tend towards derivability ` that relates two sets of formulas.
In this consideration we shall leave formulas uninterpreted. The
formulas of classical logic shall be recovered in a later section, after
we have introduced generalized type connectives. The proof system
of sequent calculus has as objects sequents. A sequent is, formally,
two sequences of formulas separated by commas conjoined by the
symbol `. Let Γ and ∆ be sequences of formulas separated by
commas. Typically, rule schemas of sequent calculus include the
following structural rule schemas—we formalize that the two sides
of ` are actually sets:

Γ,φ ,φ ` ∆

Γ,φ ` ∆

Γ1,φ ,ψ,Γ2 ` ∆

Γ1,ψ,φ ,Γ2 ` ∆

Γ ` ∆,φ ,φ

Γ ` ∆,φ

Γ ` ∆1,φ ,ψ,∆2

Γ ` ∆1,ψ,φ ,∆2

We also call Γ (a set of) assumptions and ∆ (a set of) conclusions.
The logical interpretation of a sequent Γ ` ∆ is that its derivability in
sequent calculus means that a derivation in natural deduction exists:
if Γ ` ∆ holds then there exists a derivation in natural deduction with
as set open premises Γ and a conclusion in ∆.

11

For example, consider the weaking rule schemas:

Γ ` ∆

Γ,φ ` ∆

Γ ` ∆

Γ ` φ ,∆

We can read the left weakening rule as stating: if there exists a
derivation tree in natural deduction with open premises Γ and
conclusion in ∆, then we can add an unrelated open premise (e.g.
using conjunction introduction and elimination) and construct a
derivation tree such that it witnesses Γ,φ ` ∆. The right weakening
rule states: since Γ ` ∆ holds there exists a derivation tree of some
conclusion in ∆, and this derivation tree can also be directly used as a
witness for Γ ` φ ,∆.
In summary, the sequent calculus we have outlined can be thought of
as a meta-proof system that formalizes the derivability relation of
natural deduction.
We will formalize a slightly different sequent calculus here that
introduces the notion of focus. What we will see is a simplification
of the type system in [3].
We have three syntactic categories: values, environments, and
commands. Environments are also called contexts.

Γ ` φ | ∆ (value)
Γ | φ ` ∆ (context)

Γ ` ∆ (command)

The symbols ` and | are special separators, part of the sequent. The
reason for using the special symbol | is because it is different than
commas that separate formulas in Γ and ∆. Γ and ∆ stand for

12

sequences of formulas seperated by commas, and we assume similar
structural rules as before allowing us to handle such sequences as
sets. The formula φ above is called the focussed formula: that
focussed formula is on the right of ` in Γ ` φ | ∆ and it is on the left
of ` in Γ | φ ` ∆. A sequent that has a focussed formula is called a
focussed sequent. Hence, the last sequent is unfocussed.
All formulas on the left of ` are still called assumptions, including
the focussed formula. Similarly, all formulas on the right of ` are
still called conclusions. The logical intuition behind sequents is the
same: there exists a derivation in natural deduction with as open
premises the set of assumptions and a conclusion on the right.
We define the following rule schemas on focussed sequents:

Γ ` φ | ∆ Γ | φ ` ∆

Γ ` ∆
cut

Γ | φ ` φ ,∆ Γ,φ ` φ | ∆

Γ,φ ` ∆

Γ | φ ` ∆

Γ ` φ ,∆

Γ ` φ | ∆
(Compare to section 4 of [3].)

The cut rule is the only rule that allows one to eliminate a focussed
formula, while the other rules introduce a focussed formula: the two
rules on the top right close the focussed formula by assumption, the
two bottom right rules introduce focus by eliminating a command.
The reason for having a focussed formula is still elusive at this point.
We shall return to this issue later on, where we deal with
computational interpretation.

13

2.3 (Co-)data types

In the previous section we have only considered uninterpreted
formulas. The proof system can be adapted to allow user-defined
types, to allow the specification of type constructors.
In programming languages and interactive theorem proving,
providing a facility for user-defined types is important. Types allow
one, in the case of programming, to organize information and
processes. In the case of interactive theorem proving,
formulas-as-types allows one to formalize theorems, and by
proofs-as-programs to prove them valid if the type system is sound.
We shall consider a systematic approach for defining type
connectives following [4, 5]. A definition of a type connective
consists of: the connective which is defined, free type variables and a
set of sequents. The set of sequents may only consist of focussed
sequents, and focussed formulas must have the defined type
connective at the root of the focussed formula. Such sequents are
called the defining clauses of the type definition. One should be
careful to distinguish the use of sequents in two different places:
sequents as the defining clauses of a type definition,
sequents as the objects of our proof system.
The computational intuition behind such clauses can be found in [4]:
“assumptions act as inputs and conclusions act as outputs.” This
intuition will be further developed in the next few sections.
There are two kinds of type definitions: data and codata. For the
first kind, all defining clauses have focus on the right, that is, all
defining clauses are value sequents. For the second kind, all defining
clauses have focus on the left, i.e. are context sequents.

14

Example 1. Well-known constructions for sets are shown below.
Consider the first data type definition. Given two types A and B, then
the disjoint union A⊕B is formed by either an element of A or an
element of B. Following our previous computation intuition: given as
input some A then there exists (by definition) some output A⊕B, and
similar for the second clause. The other data type definitions have a
similar intuition: A⊗B pairs two elements and 1 is a unit type.

data A⊕B data A⊗B data 1 data 0
A ` A⊕B | A,B ` A⊗B | ` 1 |
B ` A⊕B |

Remark that the definition of 0 has no defining clauses. This is valid
since a type definition consists of a set of clauses that could possibly
be empty. Remember that for data types, all clauses have focus on
the right.

Example 2. Lesser-known constructions for logical connectives:

codata ANB codata AOB codata ⊥ codata >
| ANB ` A | AOB ` A,B | ⊥ `
| ANB ` B

Remember that for codata types, all clauses have focus on the left.
It might seem at first counter-intuitive, that both 0 and > have no
defining clauses. The intuition is that a value of 0 is never
constructable, whereas > is an abstract object with no possible
observations [4]. The defining clause | ⊥ ` signifies that there exists
a derivation in natural deduction with its conclusion in the empty
set—that is obviously absurd, and we might believe that ⊥ is false.

15

Example 3. For implication we give the following definition. In
addition we define the dual of implication, called difference.

codata A→ B data A−B

A | A→ B ` B A ` A−B | B

User-defined types extend the inference rules of the proof system we
consider. We will later employ such extended proof system as a type
system for checking whether terms have a valid type. Given a type
definition, we have that certain witnesses correspond to the defining
clauses. In our proof system each type definition has two associated
kinds of inference rules: a left and a right rule. Note that these
typing rules were found in [5], but were absent from [4].
Instead of presenting the generalized rules, which in my opinion are
confusing, we will show the typing rules by example. In general we
have the following pattern:
For data types, there is precisely one left rule which has, for each
clause an assumption, and for each clause there is one right rule.
For codata types, there is precisely one right rule which has, for each
clause an assumption, and for each clause there is one left rule.
The assumptions of the left rule for data and the right rule for codata
are unfocussed, and each assumption sequent per clause corresponds
to the additional input and output types of that clause.
Each right rule for data and left rule for codata, per clause has as
many assumptions as there are other input and output types.
For the right rules for data and the left rules for codata, the
assumptions corresponding to input are focussed on the right, and
assumptions corresponding to output are focussed on the left.

16

Example 4. The typing rules for all the data definitions of the
previous examples are given here. We first see the data type rules of
A⊕B, A⊗B, 1, 0, and A−B. The codata type rules of ANB, AOB,
⊥, >, and A→ B are quite similar to those of the data types.

Γ,A ` ∆ Γ,B ` ∆

Γ | A⊕B ` ∆
L⊕

Γ ` A | ∆
Γ ` A⊕B | ∆

R⊕,1
Γ ` B | ∆

Γ ` A⊕B | ∆
R⊕,2

Γ,A,B ` ∆

Γ | A⊗B ` ∆
L⊗

Γ ` A | ∆ Γ ` B | ∆
Γ ` A⊗B | ∆

R⊗

Γ ` ∆

Γ | 1 ` ∆
L1

Γ | 0 ` ∆
L0

Γ ` 1 | ∆
R1

Γ,B ` A,∆
Γ | A−B ` ∆

L−
Γ | A ` ∆ Γ ` B | ∆

Γ ` A−B | ∆
R−

Γ | A ` ∆

Γ | ANB ` ∆
LN,1

Γ | B ` ∆

Γ | ANB ` ∆
LN,2

Γ ` A,∆ Γ ` B,∆
Γ ` ANB | ∆

RN

Γ | A ` ∆ Γ | B ` ∆

Γ | AOB ` ∆
LO

Γ ` A,B,∆
Γ ` AOB | ∆

RO

Γ | ⊥ ` ∆
L⊥

Γ ` ∆

Γ ` ⊥ | ∆
R⊥

Γ ` > | ∆
R>

Γ ` A | ∆ Γ | B ` ∆

Γ | A→ B ` ∆
L→

Γ,A ` B,∆
Γ ` A→ B | ∆

R→

17

In my opinion, we can appreciate two kinds of dualities here. A dual
is a very simple syntactic operation that swaps two symbols and is an
involution.
The first duality is swapping conjunction and disjunction. In the
typing rules, we see that L⊕ and L⊗ are very similar: one has
meta-level conjunction with multiple assumptions in the rule, the
other has object-level conjunction with multiple assumptions in the
sequent. We also see a similarity between R⊕ and R⊗.
The second duality is swapping data and codata. In the typing rules,
we see that L and R rules are swapped. For focussed sequents, swap
the symbols | and ` in assumptions and conclusion of the inference
rules. Furthermore, we swap the additional variables on the left and
right of ` for unfocussed sequents. We swap [⊕ and N], [⊗ and O]
and all other type connectives that were shown side by side in
examples 1 and 2.
We will finally remark that the type system is kinded. This means
that type definitions themselves are also stratified in a kind system.
Kinds are super-types of types. Our type definitions are implicitly
kinded. The language of types and kinds is the simply typed lambda
calculus, with ∗ as base kind. Type variables such as A and B are of
kind ∗. Type connectives have a fixed arity, and applying the right
number of variables also gives the kind ∗.
In [5] it is suggested that this approach is also suitable for defining
(co-)inductive data types. This allows users to formalize natural
numbers and binary trees on the one hand, and streams on the other
hand. Certain type connectives such as ∃ :: (∗→ ∗)→∗ and
∀ :: (∗→ ∗)→∗ can be used to express quantification. We will not
consider this aspect in more detail here.

18

3 Term languages

In this section we will treat the µµ̃-calculus, and relate it to
user-defined types of the previous section.
The type definitions we have seen previously will be used to
construct inhabitant terms of types. Existence of an inhabitant of a
user-defined type is justified by one of its defining clauses. The core
calculus also consists of primitive terms, which we will see now.

3.1 The core µµ̃-calculus

The core µµ̃-calculus has three syntactic categories of terms: values,
contexts and commands. These are defined by the following
grammar:

v ::= x | µα.c e ::= α | µ̃x.c c ::= 〈v | e〉

By x,y,z, . . . we denote value variables of which there are countably
many. By α,β ,γ, . . . we denote context variables, disjoint from value
variables, of which there are also countably many. There are two
binding constructs: µα.c is a value which itself binds an
environment variable α in the nested command c, and µ̃x.c is an
environment which binds a value variable. We consider our language
up to renaming of bound variables.
Example terms are: x, α , µα.〈x | α〉, µ̃x.〈x | α〉 and
〈µα.〈x | α〉 | µ̃x.〈x | α〉〉. A term is closed if all its variable
occurrences are bound by a surrounding µ or µ̃ term. A nice
exercise is to think of all possible closed terms of this calculus.

19

3.2 The µµ̃-calculus with typesto be

Once we have the definition of user-defined types, we also need to
extend the syntax of terms. We shall do this by example, but this can
be generalized in full. We show how it works by example, because
the general syntax of [5] is involved and not quickly understandable.

Example 5. Consider the type definition of functions. We now shall
show the full syntax of defining clauses: not only formulas, but
typing judgements of the form t : F . Every unfocussed judgement on
the left-hand side of ` types a value variable. Every unfocussed
judgement on the right types a context variable. For data, each clause
introduces a value term, and for codata, each clause introduces a
context term. The term typed by the focussed formula that contains
variables occurring in the rest of the clause.

codata A→ B where
x : A | A[x,α] : A→ B ` α : B

We abbreviate A[x,a] as x ·α . We can reconsider the syntactic
categories of values and contexts by adding:

v ::= . . . | µ(x ·α.c) e ::= . . . | v · e

Introducing a data type involves the following changes:

data A⊗B where
x : A,y : B ` P(x,y) : A⊗B | we abbreviate P(x,y) as just (x,y)

v ::= . . . | (v,v) e ::= . . . | µ̃[(x,y).c]

20

Having multiple clauses reveals more interesting patterns:

data A⊕B where codata ANB

x : A ` L(x) : A⊕B | | I[α] : ANB ` α : A

x : B ` R(x) : A⊕B | | J[α] : ANB ` α : B

v ::= . . . | L(v) | R(v) e ::= . . . | µ̃[L(x).c | R(x).c]

v ::= . . . | µ(I[α].c | J[α].c) e ::= . . . | I[e] | J[e]

The binding construct becomes a (co)pattern matching construct: it
now contains more than one nested commands. We will see that, for
example, 〈µ(I[α].c1 | J[α].c2) | I[e]〉 reduces to c1 with α substituted
by e: the copattern indicates that we have a choice between c1 and c2
that depends on the observation of the environment. Dually,
〈R(v) | µ̃(L(x).c1 | R(x).c2)〉 reduces to c2 with x substituted by v:
again we have a choice that depends on the construction of the value.

3.3 Typing Rules

We observe that the proof rules corresponding to a user-defined
connectives also are related to the typing rules of its introduced
terms. The typing rules for the core µµ̃-calculus are first shown. Just
as the proof rules are generally applicable, we can always type the
core terms using these rules. The typing rules for the parametric
µµ̃-calculus is not given in full generality, but we will only consider
an example.
We have found these rules in section 4 of [3] and in figure 4 of [5].

21

Γ ` v : φ | ∆ Γ | e : φ ` ∆

〈v | e〉 : (Γ ` ∆)
Cut

Γ | α : φ ` α : φ ,∆
CoVar

Γ,x : φ ` x : φ | ∆ Var

c : (Γ,x : φ ` ∆)

Γ | µ̃x.c : φ ` ∆
CoAct

c : (Γ ` α : φ ,∆)

Γ ` µα.c : φ | ∆ Act

Example 6. The typing rules for terms of A⊕B are below. This is
very closely related to the proof rules we have seen before for the
user-defined type A⊕B.

c1 : (Γ,x : A ` ∆) c2 : (Γ,x : B ` ∆)

Γ | µ̃(L(x).c1 | R(x).c2) : A⊕B ` ∆
L⊕

Γ ` v : A | ∆
Γ ` L(v) : A⊕B | ∆

R⊕,1
Γ ` v : B | ∆

Γ ` R(v) : A⊕B | ∆
R⊕,2

§7 Functions The application operator · deserves more attention.
We repeat the definition of A→ B below, with x ·α for A[x,α].

codata A→ B where
x : A | x ·α : A→ B ` α : B

The function type is a co-data type, since the focussed judgement is
on the left. The type constructor→ is of kind ∗→ ∗→ ∗. We now
have that λ -abstraction is a derived concept, as corroborated by the
following definition:

λx.v = µ(x ·α.〈v | α〉)

22

From the definition of A→ B above it is apparent that only
application between a proof and an context is defined. But
application of two proof terms is also a derived concept:

v ·w = µβ .〈v | w ·β 〉

Given that λx.v = µ(x ·α.〈v | α〉), the typical typing rules for
λ -abstraction and λ -application are admissible:

Γ,x : A ` v : B | ∆
Γ,x : A ` v : B | α : B,∆

W
Γ,x : A | α : A ` α : A,∆

CoVar

〈v | α〉 : (Γ,x : A ` α : B,∆)
Cut

Γ ` µ(x ·α.〈v | α〉) : A→ B | ∆
R→ tobe

Γ ` v : A→ B | ∆
Γ ` v : A→ B | β : B,∆

W

Γ ` w : A | ∆
Γ ` w : A | β : B,∆

W
Γ | β : B ` β : B,∆

CoVar

Γ | w ·β : A→ B ` β : B,∆
L→

〈v | w ·β 〉 : (Γ ` β : B,∆)
Cut

Γ ` µβ .〈v | w ·β 〉 : B | ∆ Act

Where W is the admissible weakening rule, since the CoVar and Var
rules have arbitrary contexts Γ and ∆ we can modify the derivation
on top by adding aribtrary judgements.
We will animate these expressions in the next section.

23

4 Reduction relations

There are two core rewrite rules:

〈µα.c | e〉 →µ c{α := e} 〈v | µ̃x.c〉 →µ̃ c{x := v}

where we substitute, avoiding capture by suitable renaming, the free
occurrences of variables in the nested command by the variable
bound in the outer construct. This system is not confluent since the
critical pair

c[α := µ̃x.c′]← 〈µα.c | µ̃x.c′〉 → c′[x := µα.c]

is not necessarily joinable. Confluence can be restored by
prioritizing one rule over the other. A particular priority scheme is
called a strategy. The calculus is parametric over its evaluation
strategy. Two strategies are well-known: the call-by-value strategy
always prefers a µ-step, and the call-by-name strategy always
prefers a µ̃-step. Other strategies exists.

Example 7. Given the term µ̃x.〈µα.〈x | α〉 | µ̃y.〈y | α〉〉. This
environment term is not closed, since α occurs free. However it also
contains a bound α , which we can freely rename to β :
µ̃x.〈µβ .〈x | β 〉 | µ̃y.〈y | α〉〉. There are two reduction paths to the
normal form µ̃x.〈x | α〉, namely one by reducing the inner command
〈µβ .〈x | β 〉 | . . .〉 and the other reducing 〈. . . | µ̃y.〈y | α〉〉.

The rewrite rules are also extended for user-defined types. Again,
instead of giving the generalized version, we will instead show it by
example.

24

For the two types A⊗B and A→ B we have the reductions:

〈(v,w) | µ̃[(x,y).c]〉 →⊗ c{x := v,y := w}

and
〈µ(x ·α.c) | v · e〉 →→ c{x := v,α := e}

Example 8. Consider A⊗B→ A. We show a term that inhabits this
type, and its typing derivation: µ(x ·α.〈x | µ̃[(l,r).〈l | α〉]〉).
Let Γ = x : A⊗B, l : A,r : B in

x : A⊗B ` x : A⊗B | α : A
Var

Γ ` l : A | α : A
Var

Γ | α : A ` α : A
CoVar

〈l | α〉 : (x : A⊗B, l : A,r : B ` α : A)
Cut

x : A⊗B | µ̃[(l,r).〈l | α〉] : A⊗B ` α : A
L⊗

〈x | µ̃[(l,r).〈l | α〉]〉 : (x : A⊗B ` α : A)
Cut

` µ(x ·α.〈x | µ̃[(l,r).〈l | α〉]〉) : A⊗B→ A |
R→

Let us call above expression π1 : A⊗B→ A. We can now apply this
function to an argument as follows: π1 · (y,z) for variables y : A,z : B.

π1 · (y,z) =µβ .〈π1 | (y,z) ·β 〉 (def)
=µβ .〈µ(x ·α.〈x | µ̃[(l,r).〈l | α〉]〉) | (y,z) ·β 〉 (def)
→µβ .〈(y,z) | µ̃[(l,r).〈l | β 〉]〉 →→
→µβ .〈y | β 〉 →⊗

The reader might find it an interesting exercise to prove that the term
is well-typed by deriving y : A,z : B ` π1 · (y,z) : A |.

25

5 Historical Context

As mentioned in the introduction of [2], the type of double negation
elimination is given to the control operator C due to Felleisen and
Griffin. This extends the syntax of simply typed λ -calculus in two
ways, namely by adding the type ⊥, and by adding the constant C
such that there are two kinds of applications: (MN) and (CN) for
terms M and N.
Parigot found that a natural deduction system with multiple
conclusions was more convenient to work with. In my mind, this
already brings the resulting natural deduction system closer to
sequent calculus. The result is called the λµ-calculus, which was
developed in the quest of finding a suitable computational
interpretation that corresponds to classical logic [1].
In λµ-calculus an additional binding term is introduced to
λ -calculus, denoted µα.[β]M for M any term. Named terms are
[β]M for any term M, and are themselves also considered terms. The
calculus can be untyped or typed. Intuitively, we can understand the
operator µ as being a λ which potentially accepts an infinite number
of arguments [2]: “The effect of the reduction of (µβ .u)v1 . . .vn is to
give the arguments v1, . . . ,vn to the subterms of u named β , and this
independently of the number n of arguments µβ .u is applied to:” the
reduction rule mentioned here is defined as (µβ .u)v→ µβ .u[v/∗β]
where u[v/∗β] replaces in u each subterm [β]w by [β](w)v.
In proof theory we can embed classical logic in intuitionistic logic
by applying the double negation translation. In translating λµ-terms
to λ -terms, this is called continuation-passing-style translation.
According to [2], the difference between λ -calculus and

26

λµ-calculus, is that only the latter allows infinite arguments whereas
the same term translated back to λ -calculus does not. It is then
claimed that this difference allows classical logics to reproduce
imperative features of programming—which according to my
hypothesis could be interpreted as executions of multi-machine
models: this connection is however not mentioned in the literature.
We then move to sequent calculus. A goal behind earlier work was
to find a “sequent calculus version” of Parigot’s λµ-calculus, which
in Herbelin’s Ph.D. dissertation resulted in the λ̄µ-calculus. Sequent
calculus was originally developed by Gentzen to study
cut-elimination procedures for first-order classical logic, and is
considered by [3] to be more well-behaved than natural deduction.
The λ̄µ-calculus is presented as a sequent calculus variant of
λµ-calculus. λ̄µ-calculus is essentially the same as λµ-calculus, in
the sense that it preserves normal forms, and that a homomorphism
with respect to call-by-name evaluation exists. But it differs in the
sense that cut-elimination and reduction steps are no longer directly
corresponding.
The λ -calculus and λµ-calculus have the property of confluence: the
outcome of reduction does not depend on the chosen evaluation
strategy. However, it might be useful to have direct control over
evaluation strategy. This became apparent in λ̄µ-calculus, which
only preserves call-by-name reduction of translated λµ-terms. The
λ̄µ-calculus is extended with the dual of the µ binder, denoted as µ̃ .
The result is called λµµ̃-calculus, which no longer is confluent [3].
It turns out that precise control over evaluation strategy now is
necessary to regain confluence. This calculus has two confluent
subsyntaxes, one preserves call-by-name reduction of translated

27

λµ-terms and the other preserves call-by-value reduction. The two
sub syntaxes are dual, in the sense that a syntactic transformation
exists between the two: this explains why some consider the
evaluation strategies call-by-name and call-by-value to be duals.
The calculus that is considered here is the parametric µµ̃ core with
user-defined (co-)data types as given in [4]. We have derived
λ -terms as instances of a user-defined type, and the usual typing
rules can be mimicked by the typing rules that are instances of the
given generalized system.
It seems that there is no clear reference to the origin of this
generalized type system; it does not appear in [4], but in [5] it cites
[4] as the origin. Also, in our version of [5], the type system
contained some typos, but which turned out not to be of big
importance for our interpretation. The reason for absence of
reference turned out that [11] was not yet finished at the time of
writing [4, 5]. It seems that [11] is the first complete description of
the generalized type system.

28

Bibliography

[1] Michel Parigot. λ µ-calculus: an algorithmic interpretation of
classical natural deduction. In 3rd International Conference on
Logic for Programming Artificial Intelligence and Reasoning,
pages 190–201. Springer, 1992.

[2] Michel Parigot. Classical proofs as programs. In Kurt Gödel
Colloquium on Computational Logic and Proof Theory, pages
263–276. Springer, 1993.

[3] Pierre-Louis Curien and Hugo Herbelin. The duality of
computation. In 5th ACM SIGPLAN International Conference
on Functional Programming, volume 35, pages 233–243.
ACM, 2000.

[4] Paul Downen and Zena Ariola. The duality of construction. In
17th European Symposium on Programming Languages and
Systems, pages 249–269. Springer, 2014.

29

[5] Paul Downen, Philip Johnson-Freyd, and Zena M Ariola.
Structures for structural recursion. In 20th ACM SIGPLAN
International Conference on Functional Programming,
volume 50, pages 127–139. ACM, 2015.

[6] Henning Basold, Helle Hvid Hansen, Jean-Éric Pin, and Jan
Rutten. Newton series, coinductively: a comparative study of
composition. In Mathematical Structures in Computer Science,
pages 1–29. Springer, 2017.

[7] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten.
Modeling component connectors in reo by constraint automata.
Science of computer programming, 61(2):75–113, 2006.

[8] GreenArrays Product Data Book DB001: F18A Technology
Reference. GreenArrays Incorporated, 2017.

[9] Federico Aschieri, Agata Ciabattoni, and Francesco A Genco.
Gödel logic: From natural deduction to parallel computation.
In 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), 2017, pages 1–12. IEEE, 2017.

[10] Hans-Dieter Hiep. Alternative connectives for classical
propositional logic.

[11] Paul Downen. Sequent Calculus: A Logic and a Language for
Computation and Duality. PhD thesis, University of Oregon,
2017.

30

