
Framework Development

Hans-Dieter A. Hiep

January 23, 2017

1 Introduction

This document comprises the development of the framework, to be implemented in Haskell. The sequel is
organized as follows: section 2 introduces the preliminaries in detail, section 3 describes the most important
structures that are used within the framework. Where possible, the document includes annotations with back-
ground information regarding design choices.

2 Preliminaries

De�nition 1. Given a binary relation R ⊆ X × Y . By successor neighbourhood xR we denote the set xR =
{y ∈ Y | x R y}. By predecessor neighbourhood Ry we denote the set Ry = {x ∈ X | xRy}. In particular, a
one-to-one binary relation has a singleton successor neighbourhood and a singleton predecessor neighbourhood.

De�nition 2. A directed graph G is a pair (V,E) of a set of vertices V and a set of directed edges E ⊆ V × V .
The sets of outgoing edges outv and incoming edges inv parameterized by some vertex v ∈ V are de�ned as
usual. In particular, a weighted directed graph G is a triple (V,E,w) where w : E → R is a weight function that
assigns to every edge a non-negative weight. An undirected graph G is a directed graph where for every edge
(u, v) there is also an edge (v, u). A loop is an edge (u, u).

De�nition 3. An independence relation (or commutation relation) I ⊆ S × S is an irre�exive, symmetric
relation over S. In particular the independency graph is (S, I) where I is an independence relation over S, and
can be represented by an undirected graph with vertex set S and edge set I. The complement D = S × S\I
is called a dependence relation. The dependency graph (S,D) is de�ned similarly, and often depicted without
loops. (Adopted from [DM97].)

De�nition 4. A monoidM = (S, •, ε) is a set S together with some binary operation • : S × S → S for which
the following properties holds:

1. associativity, for all s, t, u ∈ S it holds that (s • t) • u = s • (t • u);

2. identity, there exists an element e ∈ S, such that for every a ∈ S, it holds that e • a = a = a • e.

De�nition 5. A partially commutative monoid C(I) is a monoid (S, •, ε) with an independence relation I ⊆ S×S
for which the following property holds:

3. Commutativity, for all s, t ∈ S it holds that (s, t) ∈ I ⇒ s • t = t • s.

In particular, we call C(I) or C a (totally) commutative monoid, i.e. a monoid where the above property holds
for any element, if I consists of every pair (s, t) of unique elements s, t ∈ S. We say that C(∅) = M, i.e. a
monoid is a partially commutative monoid where every element is dependent. (Inspired by [HI05].)

De�nition 6. An alphabet Σ is a �nite set of which its elements are called letters. By Σ∗ we denote the set of
all �nite sequences, words, over Σ (cf. Kleene star). For any x ∈ Σ∗, by |x| we denote the length of the word
and |x|a denotes the number of occurrences of the letter a in x. By Σn we denote the set of all worlds over Σ
with �xed length n, i.e. for every x ∈ Σn it holds |x| = n.

De�nition 7. For any n, an adjacent transposition relation TI ⊆ Σn×Σn induced by an independence relation
I ⊆ Σ× Σ is a symmetric relation over Σn, where for u, v ∈ Σn, any letters a, b ∈ I and words p, s ∈ Σ∗:

u TI v ⇔ u = pabs and v = pbas.

That is, u T v if v is u with a transposition of two adjacent letters. By the permutation relation PI induced by
an independence relation I we denote the re�exive transitive closure of TI for any n, that is, u P v if and only
if there exists a possibly empty sequence z1, . . . , zn of words in Σ∗ such that:

u TI z1 TI . . . TI zn TI v.

1

By [u]I we denote the equivalence class of u under some PI induced by I, i.e.

[u]I = {v ∈ Σ∗ | u PI v}.

De�nition 8. A Dyck language over some two letter alphabet Σ = {[,]} is de�ned as

{u ∈ Σ∗ | imb(u) = 0 ≤ imb(v) for all pre�xes v of u},

where imb : Σ∗ → Z is de�ned as imb(u) = |u|[− |u|], denoting the imbalance of opening brackets unmatched
with closing brackets.

3 Framework

We investigate �ve structures: that of states, that of messages, that of events, that of process descriptions and
that of simulations. We assume that P is a �nite set of processes, and that a network is a directed graph (P,C),
consisting of processes as vertices and channels C ⊆ P × P as directed edges. We assume that every process
has an implicit channel to itself, i.e. (p, p) ∈ C for every p ∈ P .

3.1 Events

De�nition 9. An event is parameterized on the message space M and state space Σ, happens at some process
p, and is either:

1. an internal event, with a next state σ ∈ Σ;

2. a send event, with sent message µ ∈M , intended received q ∈ P , and next state σ ∈ Σ;

3. a receive event, with received message µ ∈M , original sender q ∈ P , and next state σ ∈ Σ;

4. a crash event.

The set of events is denoted E.

We deviate from the de�nition in [Fok13], since we explicitly require crashes happen as events. In a Byzantine
setting, Byzantine processes can only send arbitrary messages after a crash event has occurred.

We say that any monoid on E is an execution, typically represented by a sequence of events. For sake of
simplicity, we assume every execution is �nite�although we will encounter possibly in�nite executions, it is not
practically necessary to simulate these in�nite executions event by event.

Events can independently occur at di�erent processes, hence we de�ne a relation on the events in an execution
specifying which events must happen before others.

De�nition 10. The causal order is the smallest transitive dependence relation ≺ ⊆ E×E such that for a ≺ b:

1. if a and b happen at the same process, and a occurs before b, then a ≺ b;

2. if a is a send event and b is a corresponding receive event, then a ≺ b.

The last property deserves some attention. What does it mean that a send event corresponds to a receive
event? We illustrate this using the following example. Let di�erent kinds of punctuation indicate di�erent
corresponding events.

[({ {] }) [(})]

So in this example, there are three di�erent correspondences. We make precise what we mean by corresponding,
below. Internal process state is irrelevant for matching corresponding events. In the diagram above, we assume
that the brackets, parens and braces are mutually di�erent correspondences (i.e. brackets do not correspond to
parens, et cetera). Open marks indicates a send event and a closed mark indicates a receive event.

De�nition 11. A send event s ∈ E corresponds to a receive event r ∈M if and only if:

1. the message µ is the same at s and r,

2. the intended receiver at s is the same as the process where r happens,

3. the original sender at r is the same as the process where s happens.

2

Example 12.

t = 0 1 2 3 4 5 6 7 8 9 A B
[] []

() ()
{ { } }

We show the corresponding messages in a separate row. Do the �rst and third mark correspond? For brackets
and parens: two send events never match. In the case of braces, however, the messages seemingly correspond.
However, the second and the third brace also correspond according to our de�nition, and so does the �rst and
second brace correspond to the fourth brace. Thus, we have four correspondences. For brackets and parens, we
have three correspondences (why?). To demonstrate that this is wrong, consider

[]]

which has two correspondences: the �rst send is received both by the second and third event. Clearly, the last
receive event should never happen without a corresponding send event.

Philosophical note: Can receive events happen before send events? Consider two processes, p and
q. Suppose q has knowledge of the inner working of p. Now p sends a message containing its
new state, and progresses to that new state and pauses. Only when p wakes up, after a while,
will it send a message to q. However, when q receives the �rst message by p it can simulate the
inner working of p and thus know that it will receive a message from p. Accordingly, q receives
the message that will be send by p, but before the actual message is sent. After a while, p
wakes up and actually sends the message to q. Is it a realistic assumption that messages are
never received before they are sent? May processes simulate each other in this way? What if
a process is simulated that has in the mean time crashed? What about abstract simulation,
where only an abstract part of the other machine is simulated, or speculative simulation, where
non-deterministically multiple possible states are simulated until enough evidence is gathered to
conclude the actual state, or undoable simulation, where every consequence of a faulty simulation
can be undone?

Now consider a related problem: suppose one is walking past the events from left to right, is it possible to say
at any point in time which sent messages are not received? We will comment on this problem later on.

3.2 Representations of free partially commutative monoids

Informally, a free object is a collection of elements where only the algebraic properties hold. In particular a free
monoid FM(Σ) is the set of all words of some generating alphabet Σ. A free totally commutative monoid FC(Σ)
is the set of all �nite multi-sets consisting of letters of a generating alphabet Σ. A free partially commutative
monoid FC(Σ, I) is the set of equivalence classes [x]I induced by the independence relation I ⊆ Σ× Σ.

A representation of a free monoid is simply Σ∗. A representation for free totally commutative monoids
can be found within a representation of free partially commutative monoids, where by de�nition I is �xed. A
suitable representation for free partially commutative monoids are labelled directed graphs [Per85], as follows:

For each word s ∈ Σ∗ we construct a dependency graph, with as vertices the integers 1, . . . , |s|, where each
vertex i is labelled by the i-th letter si. Recall that D is the dependency relation induced by I. There is an
edge (i, j) if and only if (1) i < j, and (2) (si, sj) ∈ D, and (3) for all k such that i < k < j we have si 6= sk.
There are at most |Σ| · |s| edges in this graph. Two free partially commutative monoids are equal if and only if
their representation as dependency graphs are isomorphic with respect to labelling.

Example 13. Consider the independency relation I = {(a, b), (b, a), (c, d), (d, c)}. It has an induced dependency
relation D = {(a, a), (a, c), (a, d), (b, b), (b, c), (b, d), (c, c), (d, d)}. Let s = abdcbaa. We construct a dependency
graph as follows: for each vertex from left to right, we scan towards the right, creating edges if the corresponding
labels are related in D. We stop scanning either when we reach the end of the list or after we reached a vertex
with the same label.

An alternative representation for free totally commutative monoids is that of the function space NΣ, i.e.
a mapping from every letter of the alphabet to some natural number. Intuitively, we count the number of
occurrences of each element. Hence this representation is also called the multi-set representation.

A free partially commutative monoids has an alternative representations as a tuple of subsets of the alphabet,
i.e. 2Σ × 2Σ × · · · × 2Σ. Within each block, letters can freely commute. We will use this representation for
computing the normal form. There are two normal forms for free partially commutative monoids. We will only
consider the normal form by Foata. Two elements of a free partially commutative monoid are equal if and only
if they have the same unique normal form. Clearly, normal forms always preserve the length of the original
word.

TODO

3

3.3 Dyck monoids

De�nition 14. An involution relation J ⊆ S × S is an irre�exive, symmetric, one-to-one relation over some
set S.

Every function f : S → S that is an involution, i.e. f(f(a)) = a, is also an involution relation. However,
involution relations are more general, e.g. take S = {−, 0,+} and let − and + be related, but 0 is unrelated.
An element a related by an involution relation to some other element a−1 are also called the inverses of each
other, [DLM08].

Example 15. S = {↓,−, 0,+, ↑}, with − and + related, ↑ and ↓ related.

The notation of two elements a and a−1 suggest that aa−1 cancel, i.e. aa−1 = 1. However, due to symmetry,
we also have a−1a = 1. In particular, with our problem in mind, we do not want that a−1a = 1 cancel, i.e. a
send must cancel a receive, but a receive must never cancel a send. We thus have a stronger relation:

De�nition 16. A signed involution relation 7→⊆ S × S is an irre�exive, one-to-one relation over some set S,
such that the following property holds:

1. for all s, t ∈ S, if s 7→ t then not t 7→ u for any u ∈ S.

This relation is stronger than the involution relation J , since every involution is also a a signed involution
but the converse need not hold. We think of the signed involution relation as three partitions of S. We have
one partition of passive elements that are unrelated. The second partition is consists of negative elements (the
union of all predecessor neighbourhoods, i.e. all �rst components in the pair) and the third partition consists
of positive elements (the union of all successor neighbourhoods, i.e. all second components of the pair). The
number of positive elements is always the same as the number of negative elements, by one-to-one.

Example 17. S = {↓,−, 0,+, ↑} and − 7→ +, ↓7→↑. Here the negative elements are {↓,−} and the positive
elements are {+, ↑} and the passive elements are {0}.

We will now consider the main structure for events:

De�nition 18. A Dyck monoid D(J) is a partially commutative monoid C(I) = (S, •, ε) with a signed involution
relation 7→⊆ S × S for which the following properties holds:

1. the independence relation I is induced by the dependence relation D = {(s, t) | s equals t or s 7→ tor t 7→
s for all s, t ∈ S};

2. for any s, t ∈ S, if s 7→ t then s • t = ε.

A Dyck monoid can be seen as a partially commutative partially inverse monoid [DLM08]. Two elements
may cancel each other out, but the order in which they cancel is important, i.e. all elements x commute if and
only if there is no other element with which x cancels (from either the left or the right).

In the case of an empty signed involuation relation, where we have no element related and all elements are
passive, then by the �rst condition a Dyck monoid is a totally commutative monoid (since the dependency is
only re�exive) and the second condition does not apply.

Example 19. Consider the previous example: [({ {] }) [(})] . We let [7→], (7→), and
{7→}.

1. We can freely commute non-matching marks. Hence the following:

[({ {] }) [(})]
[] ({ { }) [(})]
[] [({ { }) (})]
[] [] ({ { }) (})
[] [] () { { } (})
[] [] () ({ { } })
[] [] () () { { } }

2. If we have two consequtive elements, where the element on the left is negative and the element on the
right is positive, the two can be eliminated:

[] [] () () { { } }
[] () () { { } }

() () { { } }
() { { } }

{ }

Ultimately leading to the empty word ε.

4

Note that this example already suggests the existence of a reduction relation and possibly some normal form
if we impose some order on the elements. We will investigate this later. Also, the reader might be wondering
what the correspondence between ε and a Dyck language is!

Revisiting our earlier question: can we walk from the left to the right and say which messages are not yet
received, i.e. say which open markers are not yet closed? To answer that question, we need to �nd out what
a good representation of a Dyck monoid is. We will consider two representations: that of free Dyck monoids
induced by any signed involution relation. We must also keep in mind that we do not want to construct incorrect
instances, where e.g. []] is an element, with more receive events than corresponding send events: we thus
also consider a representation that only admits negative (or only positive) elements.

Similar to the Foata normal form, the underlying alphabet of a Dyck monoid is totally ordered. Given ≤Σ,
we impose the following induced total order ≤, and let π(t) = s be the left-projection of the relation s 7→ t:

s ≤ t ⇐⇒

s, t are negative s ≤Σ t

s is negative and t positive s ≤Σ π(t)

s, tare positive π(s) ≤Σ π(t)

s is positive and t negative π(s) ≤Σ t

s, t are passive and s ≤Σ t

s is passive and t not never

t is passive and s not always

Or we simply use the order of the negative element to order elements within a Dyck monoid, and let passive
elements be ordered after all negative and positive elements.

Technical point : in the implementation we will construct sequences from the back to the front. In
this case, it must be possible to have a negative number of open marks, since from the back to
the front we will most likely encounter receive events �rst. However, the algorithm must always
progress to the end of the list: it is an error if the count is still negative at the end, since that
means that in the sequence there were more receive events than send events.

References

[DLM08] Volker Diekert, Markus Lohrey, and Alexander Miller, Partially commutative inverse monoids, Semi-
group Forum, vol. 77, Springer, 2008, pp. 196�226.

[DM97] Volker Diekert and Yves Métivier, Partial commutation and traces, Handbook of formal languages,
Springer, 1997, pp. 457�533.

[Fok13] Wan Fokkink, Distributed algorithms: An intuitive approach, MIT Press, 2013.

[HI05] Toshihiro Hamachi and Kunio Inoue, Embedding of shifts of �nite type into the dyck shift, Monatshefte
für Mathematik 145 (2005), no. 2, 107�129.

[Per85] Dominique Perrin, Words over a partially commutative alphabet, Combinatorial algorithms on words,
Springer, 1985, pp. 329�340.

5

